SINGLE ION FREE ENERGIES OF SOME MONOVALENT IONS IN MIXED DIMETHYLACETAMIDE-WATER SOLUTIONS USING THE ASYMMETRIC Ph,AsBPh, ASSUMPTION

ESAM A. GOMAA *

Chemistry Department, Faculty of Science, Mansoura University, Mansoura (Egypt) (Received 14 November 1988)

ABSTRACT

The free energies of transfer $(\Delta_{\mathbf{w}}^s G^{\Theta})$ of the ions Na⁺, Rb⁺, Cs⁺, Ph₄As⁺, Ph₄Sb⁺, Cl⁻, Br^- , I^- and Ph_4B^- from water to mixed dimethylacetamide (DMAC)-H₂O solvents have been estimated from solubility measurements at 25° C and by applying the modified tetraphenylarsonium-tetraphenylboride $(\Delta_w^s G^{\Theta}(Ph_4As^+) > \Delta_w^s G^{\Theta}(Ph_4B^-))$ assumption.

The evaluated single ion free energies for these ions are discussed in terms of both solute-solvent interaction and the preferential solvation of ions.

INTRODUCTION

In order to obtain the thermodynamics of single ions, it is helpful to take into account suitable extrathermodynamic assumptions based on theory $[1-4]$. Among all the assumptions, that as tetraphenylarsonium-tetraphenylboride (Ph₄AsBPh₄) has gained the most popularity [5-9]. Kim [10-12] proved that Ph_4AsBPh_4 is an asymmetric model and not a symmetric one as explained previously in the literature. This means that the $Ph₄ As⁺$ ion belongs more to single ion thermodynamic functions than does the $Ph_4B^$ ion. The ratio of single ion free energies of the reference ions $\Delta_w^s G^{\Theta}(\text{Ph}_4\text{As}^+)$ to $\Delta_{\rm w}^{\rm s}$ (Ph₄B⁻) was found to be 1.08 \pm 0.02 in some organic solvents [13]. The aim of this work is to estimate the single ion free energies of the ions under consideration in mixed dimethylacetamide ($\text{DMAC}-\text{H}_2\text{O}$ solvents by applying the modified asymmetric Ph_4AsBPh_4 assumption.

EXPERIMENTAL

The N, N-dimethylacetamide (DMAC) used was very pure (Uvasol) from Merck. All the experimental parts, including the preparation of solutes

^{*} All correspondence should be addressed to the author at: Teachers Training College, Salalah, P.O. Box 19905, Sultanate of Oman.

 $(NaBPh₄, RbBPh₄, CsBPh₄, Ph₄AsCl, Ph₄AsBr, Ph₄AsI, Ph₄AsBPh₄ and$ $Ph₄ SbBPh₄$), the preparation of saturated solutions and the analytical determination of solubilities, are explained in previous works [14-16].

The densities and dielectric constants of the mixed DMAC-H,O solvents were determined by using a digital oscillator, densimeter (Heraeous-Paar-DMA-50) and a dekameter DK 300 (WTW), respectively.

RESULTS AND DISCUSSION

The measured densities and dielectric constants of the mixed DMAC-H₂O solvents at 25° C are given in Table 1. The single ion free energies of transfer (Δ^s, G^{\ominus}) of Na⁺, Rb⁺, Cs⁺, Cl⁻, Br⁻ and I⁻ from water to mixed DMAC-H₂O solvents are calculated from the solubilities (C) , activity coefficients (γ_+) of the corresponding tetraphenyl derivative salts and the single ion free energies for the reference ions, Ph_4As^+ and Ph_4B^- as follows

$$
\Delta_{\rm w}^{\rm s} G^{\Theta} (\text{Na}^+) = -RT \frac{\log C_{\text{NaBPh}_4(\rm s)}^2 + 2 \log \gamma_{\pm \text{NaBPh}_4(\rm w)}}{\log C_{\text{NaBPh}_4(\rm w)}^2 + 2 \log \gamma_{\pm \text{NaBPh}_4(\rm w)}} - \Delta_{\rm w}^{\rm s} G^{\Theta} (\text{Ph}_4 \text{B}^-)
$$
\n(1)

$$
\Delta_{\mathbf{w}}^s G^{\Theta}(\mathbf{R} \mathbf{b}^+) = -RT \frac{\log C_{\mathbf{R} \mathbf{b} \mathbf{B} \mathbf{P} \mathbf{h}_4(\mathbf{s})}^2 + 2 \log \gamma_{\pm \mathbf{R} \mathbf{b} \mathbf{B} \mathbf{P} \mathbf{h}_4(\mathbf{s})}}{\log C_{\mathbf{R} \mathbf{b} \mathbf{B} \mathbf{P} \mathbf{h}_4(\mathbf{w})}^2 + 2 \log \gamma_{\pm \mathbf{R} \mathbf{b} \mathbf{B} \mathbf{P} \mathbf{h}_4(\mathbf{w})}} - \Delta_{\mathbf{w}}^s G^{\Theta}(\mathbf{P} \mathbf{h}_4 \mathbf{B}^-)
$$
\n(2)

$$
\Delta_{w}^{s} G^{\Theta} (Cs^{+}) = -RT \frac{\log C_{CsBPh_{4}(s)}^{2} + 2 \log \gamma_{\pm \text{CsBPh}_{4}(s)}}{\log C_{CsBPh_{4}(w)}^{2} + 2 \log \gamma_{\pm \text{CsBPh}_{4}(w)}} - \Delta_{w}^{s} G^{\Theta} (\text{Ph}_{4} B^{-})
$$
\n(3)

$$
\Delta_{\mathbf{w}}^{\mathbf{s}}G^{\Theta}(\mathbf{Cl}^{-}) = -RT \frac{\log C_{\mathbf{P}_{\mathbf{h}}\mathbf{A}\mathbf{s}\mathbf{Cl}(\mathbf{s})}^{2} + 2 \log \gamma_{\pm} \mathbf{P}_{\mathbf{h}}\mathbf{A}\mathbf{s}\mathbf{Cl}(\mathbf{s})}{\log C_{\mathbf{P}_{\mathbf{h}}\mathbf{A}\mathbf{s}\mathbf{Cl}(\mathbf{w})}^{2} + 2 \log \gamma_{\pm} \mathbf{P}_{\mathbf{h}}\mathbf{A}\mathbf{s}\mathbf{Cl}(\mathbf{w})}} - \Delta_{\mathbf{w}}^{\mathbf{s}}G^{\Theta}(\mathbf{P}_{\mathbf{h}}\mathbf{A}\mathbf{s}^{+})
$$
\n(4)

$$
\Delta_w^s G^{\Theta}(\text{Br}^-) = -RT \frac{\log C_{\text{Ph}_4\text{ASBr}(s)}^2 + 2 \log \gamma_{\pm \text{Ph}_4\text{ASBr}(s)}}{\log C_{\text{Ph}_4\text{ASBr}(w)}^2 + 2 \log \gamma_{\pm \text{Ph}_4\text{ASBr}(w)}} - \Delta_w^s G^{\Theta}(\text{Ph}_4\text{As}^+) \tag{5}
$$

$$
\Delta_{\rm w}^{\rm s} G^{\,\ominus}\left(I^{-}\right) = -RT \frac{\log\,C_{\rm Ph_4AsI(s)}^2 + 2\,\log\,\gamma_{\pm\,\rm Ph_4AsI(s)}}{\log\,C_{\rm Ph_4AsI(w)}^2 + 2\,\log\,\gamma_{\pm\,\rm Ph_4AsI(w)}} - \Delta_{\rm w}^{\rm s} G^{\,\ominus}\left(\rm Ph_4As^{+}\right) \tag{6}
$$

where C is the molal solubility. The subscripts s and w denote mixed solvent and water, respectively. The activity coefficient (γ_{\pm}) for the salts NaBPh₄, $RbBPh_4$, CsBPh₄, Ph₄SbBPh₄, Ph₄AsCl, Ph₄AsBr and Ph₄AsI in each

TABLE I

Physical parameters for mixed DMAC-H,O solvents, solubilities and free energies of transfer of NaBPh₄, RbBPh₄ and CsBPh₄ from water to mixed DMAC-H₂O solutions at 25° C (kJ mol⁻¹)

$X_{\rm s}$	ρ $(g cm^{-3})$	€	σ_{SPT} $\rm(\AA)$	N a B Ph ₄				
(DMAC)				\overline{C} (molal)	$\log \gamma_{\pm}$	ΔG		$\Delta^s_{\omega} G^{\Theta}$
$\mathbf{0}$	0.99707	78.5	2.730	2.118	-0.389	-1.501		$\mathbf{0}$
0.129	0.9985	67.2	3.270	2.248	-0.427	-1.582		-0.081
0.163	0.9990	65.0	3.350	2.275	-0.437	-1.581		-0.080
0.226	0.9975	61.0	3.550	2.326	-0.455	-1.586		-0.088
0.312	0.9910	56.8	3.801	2.392	-0.475	-1.611		-0.113
0.341	0.9880	55.9	3.905	2.414	-0.477	-1.649		-0.146
0.636	0.9640	45.0	4.616	2.531	-0.550	-1.879		-0.381
1.0	0.9370	37.8	5.327	2.489	-0.600	-1.038		-0.460
RbBPh ₄				CsBPh ₄				
\mathcal{C}	$\log \gamma_{\pm}$	ΔG	$\Delta^s_{\omega} G^{\Theta}$	\overline{C}	$\log \gamma_{\pm}$		ΔG	$\Delta_{\mathbf{w}}^{\mathbf{s}}G^{\mathbf{\Theta}}$
		48.55 a	$\mathbf{0}$				52.86 a	θ
1.584×10^{-3}	-0.023	32.229	-16.317	2.326×10^{-3}	-3.996×10^{-3}		30.111	-22.745
3.414×10^{-3}	-0.0322	28.540	-20.004	3.166×10^{-3}	-0.032		28.901	-23.955
0.012	-0.059	22.648	-25.898	0.012	-0.059		22.553	-30.304
0.044	-0.098	16.610	-31.936	0.041	-0.095		16.956	-35.899
0.157	-0.135	10.729	-37.510	0.153	-0.144		10.959	-41.897
0.683	-0.207	4.249	-44.298	0.263	-0.180		8.678	-44.178
0.754	-0.251	4.273	-44.273	0.686	-0.234		4.536	-48.320

 \overline{P} From ref. 16.

solution was evaluated by applying the Debye–Hückel equation [16]

$$
\log \gamma_{\pm} = -\frac{Az_1 z_2 \sqrt{C}}{1 + Ba\sqrt{C}} \tag{7}
$$

where z_1 and z_2 are the charges of the ions, $A = 1.8246 \times 10^6 / (T \epsilon)^{3/2}$, $B = 50.29 \times 10^8 / (T \epsilon)^{1/2}$; ϵ is the dielectric constant of the solvent, *T* is the absolute temperature, and a is the solvated radius. The solvated radii for tetraphenyl derivative salts were estimated by adding the crystal radii to the hard sphere diameters (σ_{SPT}) of the solvents. This last was evaluated by the use of the following relation [17]

$$
\sigma_{\rm SPT} = -0.8465 + 0.9275\sigma_0 \tag{8}
$$

where $\sigma_0 = \sqrt[3]{\frac{6V_0}{N\pi}}$ and V_0 = molecular weight (MW)/density (ρ), and N is Avogadro's number.

The free energies of transfer of the reference cation ($Ph₄ As⁺$) and the reference anion ($Ph₄B^-$) were estimated experimentally as described in

previous work from the solubilities of Ph_4C , Ph_4Ge and Ph_4AsBPh_4 , and their free energies of transfer from water to mixed DMAC-H,O solvents (see Fig. 1). $\Delta_{\omega}^{s} G^{\Theta}$ values for Ph₄As⁺ and Ph₄B⁻ ions are calculated by applying eqns. (9) and (10) as explained in previous work [13,14]

$$
\Delta_{\mathbf{w}}^{\mathbf{s}} G^{\Theta} (\mathbf{Ph}_4 \mathbf{A} \mathbf{s}^+) = 1/2 \Delta_{\mathbf{w}}^{\mathbf{s}} G^{\Theta} (\mathbf{el}) + \Delta_{\mathbf{w}}^{\mathbf{s}} G^{\Theta} (\mathbf{Ph}_4 \mathbf{Ge})
$$
(9)

$$
\Delta_{\mathbf{w}}^{\mathbf{s}} G^{\Theta} (\mathbf{Ph}_4 \mathbf{B}^-) = 1/2 \Delta_{\mathbf{w}}^{\mathbf{s}} G^{\Theta} (\mathbf{el}) + \Delta_{\mathbf{w}}^{\mathbf{s}} G^{\Theta} (\mathbf{Ph}_4 \mathbf{C})
$$
(10)

where $\Delta_{\infty}^s G^{\ominus}$ (el) is the electrostatic free energy for Ph₄AsBPh₄, calculated from the difference between $\Delta_w^s G^{\Theta}(\text{Ph}_4\text{AsBPh}_4)$ and the sum of the corresponding values for Ph_aC and Ph_aGe . The individual experimental data for each solute in the mixed DMAC-H,O solvents are given in Tables 1 and 2, and the values of their single ion free energies of transfer from water to mixed DMAC-H,O solvents are shown in Table 3 and Fig. 2.

The free energies of transfer of the electrolytes, $NABPh_4$, $RbBPh_4$ and $CsBPh₄$, increased in negativity with an increase in the solvated radii (a), mainly as a result of the increase in both electrostatic and cavity energy of interaction for the electrolytes in mixed DMAC-H,O solvents.

Recently [13], Ph_4AsBPh_4 was strongly supported for the estimation of single ion thermodynamics in pure organic solvents. It was also noted that $Ph₄ SbBPh₄$ is plausible as a reference electrolyte. In the present work the reference electrolyte Ph_4SbBPh_4 was studied in mixed DMAC-H₂O solvents and its reference cation free energies estimated; these are cited in Table 3.

By adding Δ values from ref. 13 (the difference between Δ^s_{α} G^o (Ph₄Sb⁺) and $\Delta_w^s G^{\Theta}(\text{Ph}_4\text{As}^+)$ to the single free energy values for halogen ions, the upper limit for their values was obtained. This indicated that the halogen ions have a range of $\Delta_{\alpha}^{s}G^{\ominus}$ values using both the Ph₄AsBPh₄ and Ph₄Sb- $BPh₄$ assumptions, as shown in Fig. 2.

It was observed from the final results of single ion free energies that Ph_4Sb^+ , Ph_4As^+ , Ph_4B^- , Rb^+ and Cs^+ have negative $\Delta^s_{\omega}G^{\Theta}$ values in all

TABLE 2

water to mixed DMAC-H₂O solutions at 25° C (kJ mol⁻¹) X_s Ph₄AsCl Ph₄AsE (DMAC) \equiv $\log\gamma_\pm$ ΔG $\Delta_\mathbf{w}^\mathrm{s}G$ C $\log\gamma_\pm$ ΔG $\Delta_\mathbf{w}^\mathrm{s}G$ Φ

Solubilities and free energies of transfer of $Ph₄ AsCl$, $Ph₄ AsBr$, $Ph₄ AsI$ and $Ph₄ S b B Ph₄$ from

" From ref. 16.

Fig. 1. Transfer free energies for Ph_4C , Ph_4Ge , Ph_4B^- and Ph_4As^+ from water to mixed $DMAC-H₂O$ solvents.

TABLE 3
Single ion free energies for transfer of Ph_4As^+ , Ph_4B^- , Ph_4Sb^+ , Na^+ , Rb^+ , Cs^+ , Cl^- , Br^- and I^- from water to mixed DMAC-H₂O solvents at 25 °C (kJ mol⁻¹) based on the asymmetric Ph_4AsBPh_4 ass Single ion free energies for transfer of Ph_4As^+ , Ph_4B^- , Ph_3S^+ , Na⁺, Na⁺, Q₃+, C₃+, C₁ and I⁻ from water to mixed DMAC-H₂O solvents at

TABLE 3

TABLE₃

Fig. 2. Single ion free energies of transfer for Na⁺, Rb⁺, Cs⁺, Cl⁻, Br⁻ and I⁻ from water to mixed DMAC-H₂O solvents at 25° C.

mixed DMAC-H,O solvents. Their negative values increase in DMAC-rich solvents in the following order: $Ph_4Sb^+> Ph_4As^+> Ph_4B^->Cs^+> Rh^+.$ The other ions, Cl^- , Br^- , I^- and Na^+ , have positive free energies in the mixed DMAC-H₂O solvents, increasing in the following order: $Cl^{-} > Na^{+}$ $> Br^{-} > I^{-}$. Among the cations shown in Fig. 2, only the curve for Na⁺ is shown over the whole composition range as nearly coinciding with Cl^{-} up to an X_s (DMAC) of 0.4. The large positive value for $Na⁺$ and anions indicates that DMAC is not at all a good solvator for these ions. The observed increasing destabilization of halide ions as evidenced from the order $\Delta_w^s G^{\Theta}(Cl^-) > \Delta_w^s G^{\Theta}(Br^-) > \Delta_w^s G^{\Theta}(I^-)$ in mixed DMAC-H₂O solvents is due to the combined effects of destabilizing Born-type electrostatic interactions, decreasing acidity, i.e. "anion-H-centre type" interactions of the mixed solvents, and increasing strength of the "soft-soft" interactions down the group [18].

Alkali cations other than $Na⁺$ are increasingly stabilized by the organic solvent due chiefly to the observed " basicity" or "cation-0-centre type" of interaction [18].

The observed minima in $\Delta_{\alpha}^{s}G^{\Theta}$ for Rb⁺, Cs⁺ and $\Delta_{\alpha}^{s}G^{\Theta}$ (el) can be attributed to the water structure breaking of the organic solvent [19-211. Also, water and DMAC molecules together may lead to the formation in situ of intercomponent hydrogen-bonded complexes (A) and (B) resulting in an increased basicity of the hydroxyl oxygen itself due to the presence of the N lone pair [22].

CH₃CON
\nCH₃CON
\n
$$
\begin{array}{ccc}\n& \circ & -\\ \n& \circ & -\\ \n& \circ & -\\ \n& \circ & -\\ \n& \circ & \circ \\
& \circ & \circ & \circ & \circ \\
& \circ & \circ & \circ & \circ \\
& \circ & \circ & \circ & \circ \\
& \circ & \circ & \circ & \circ & \circ \\
& \circ & \circ & \circ & \circ & \circ \\
& \circ & \circ & \circ & \circ & \circ \\
& \circ & \circ & \circ & \circ & \circ \\
& \circ & \circ & \circ & \circ & \circ & \circ \\
& \circ & \circ & \circ & \circ & \circ & \circ \\
& \circ \\
& \circ \\
& \circ \\
& \circ \\
& \circ \\
& \circ \\
& \circ \\
& \circ \\
& \circ \\
& \circ \\
& \circ \\
& \circ \\
& \circ & \circ
$$

The increasing stabilization of Ph_4B^- , Ph_4As^+ and Ph_4Sb^+ ions in mixed DMAC-H,O solvents was due partly to dispersion interactions between the four phenyl groups and organic cosolvent and partly to the cavity-forming interaction [23].

REFERENCES

- 1 A.J. Parker, Chem. Rev., 69 (1969) 1.
- 2 0. Popovych, Crit. Rev. Anal. Chem., 1 (1970) 73.
- 3 R.G. Bates, Determination of pH, Theory and Practices, 2nd edn., John Wiley & Sons, Chap. 8, 1977.
- 4 H. Schneider, Topics Curr. Chem., 68 (1970) 103.
- 5 I.M. Kolthoff and M.K. Chantooni, J. Phys. Chem., 76 (1972) 2024.
- 6 0. Popovych, A. Gibofsky and D.H. Berne, Anal. Chem., 44 (1972) 811.
- 7 B.G. Cox, G.R. Hedwig, A.J. Parker and D.W. Watts, Aust. J. Chem., 27 (1974) 477.
- 8 I.N. BasumulIick and K.K. Kundu, Can. J. Chem., 59 (1980) 79.
- 9 Y. Marcus, Rev. Anal. Chem., 4 (1980) 53.
- 10 J.I. Kim, J. Phys. Chem., 82 (1978) 191.
- 11 J.I. Kim, A, Cecal, H.-J. Born and E.A. Gomaa, Z. Phys. Chem., N.F., 110 (1978) 209.
- 12 J.I. Kim and E.A. Gomaa, Bull. Soc. Chim. Belg., 90 (1981) 391.
- 13 J.I. Kim, Bull. Soc. Chim. Belg., 95 (1986) 435.
- 14 E.A. Gomaa, Thermochim. Acta, 91 (1985) 235.
- 15 E.A. Gomaa, Ind. J. Technol., 24 (1986) 725.
- 16 E.A. Gomaa, Thermochim. Acta, 120 (1987) 183.
- 17 J.I. Kim, Z. Phys. Chem., N.F., 113 (1978) 129.
- 18 A. Bhattcharya, J. Datta, K. Das and K.K. Kundu, Ind. J. Chem., 21A (1982) 9.
- 19 R.E. Robertson and S.E. Sugamari, Can. J. Chem., 50 (1972) 1353.
- 20 K.W. Marcom and R.W. Smith, J. Chem. Thermodyn, 1 (1969) 503.
- 21 C. Moreau and G. Douherét, Thermochim. Acta, 13 (1975) 385.
- 22 A. le Nauvou, E. Gentric and P. Saumagre, Can. J. Chem., 45 (1971) 1533.
- 23 K. Das, A.K. Das and K.K. Kundu, Electrochim. Acta, 26 (1981) 471.